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Introduction
Automatic market-makers (AMMs) are one of the major innovations which de-
centralized finance brought. First, Uniswap brought markets created by x·y = k
invariant which doesn’t make any assumption about pricing of underlying as-
sets and spreads liquidity across all prices evenly. Next, we introduced the
stableswap invariant which allowed to focus most of liquidity around price 1.0
(or really any price), a very useful feature for creating stablecoin-to-stablecoin
liquidity.

In this work, we describe a method for creating liquidity for assets which
aren’t necessarily pegged to each other in a way more efficient than x · y = k
invariant. We concentrate liquidity given by the current “internal oracle” price
but only move that price when the loss is smaller than part of the profit which
the system makes. This creates 5− 10 times higher liquidity than the Uniswap
invariant, as well as higher profits for liquidity providers.

We describe the method in general, the invariants chosen, limits of their
applicability and results of simulations based on historic pricing data.

Transformed pegged invariants
Let’s transform the price space in such a way that all the prices are converted
from some target to the area close to 1 by a transformation T (). We already do
that with compound and y pools on curve.fi. Let the vector of balances in the
smart contract be b = (b0, b1, . . .) where bi is balance of i-th token supported
by the pool. Let the contract keep the internal set of coefficient p = (p0, p1, . . .)
which we call price_scale in the code. Then real balances b and transformed
balances b′can be converted between each other as:

b = T (b′,p) = (b′0p0, b
′
1p1, . . .);

b′ = T−1(b,p) =

(
b0
p0
,
b1
p1
, . . .

)
.

An invariant can be represented as a hypersurface (a curve if the number of
dimensions is 2) given by:
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Figure 1: Comparison of AMM invariants: constant-product (dashed line), sta-
bleswap (blue) and from this work (orange)

I(b′) = 0.

The invariant function is convenient to choose in such a way that p0 = 1 (for
example, 0-th asset is USD ant all prices are measured relative to USD). The
invariants we consider are constructed in such a way that:

∀x : I (x, x, . . .) = 0.

One example of such an invariant is stableswap invariant. Another is the
one which is discussed here further. Both are presented on Figure 1.

The particular curve depends on deposits in pools. It is convenient to define
an invariant D which is constant for the same curve in such a way that it is
equal to the total deposits in the pool when it is in equilibrium:

xeq = (xeq, xeq, . . .) ,

I(xeq, D) = 0,

D = Nxeq.

Since D essentially parametrizes the curve, the equilibrium point xeq (the one
vector p pegs to) becomes trivial to obtain. N here is number of coins.
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Quantification of a repegging loss
In order to quantify profits or losses we need a robust measure of profit. For
that, we choose the value of constant-product invariant at equilibrium point. For
convenience, we also convert the loss/profit function to balances at the power of
1. The resulting function which quantifies value of the portfolio without noise
reads as:

Xcp =

(∏ D

Npi

) 1
N

.

When we change p, the price peg changes but balances don’t. We can
calculate the new D for the new values of b′ and substitute new D and pi to
calculate Xcp. We allow the reduction in Xcp but only such that the loss of value
of Xcp doesn’t exceed half the profit we’ve made (which we track by tracking
the increase of Xcp).

CurveCrypto invariant
The invariant we use here is encouraged by stableswap invariant:

KDN−1
∑

xi +
∏

xi = KDN +

(
D

N

)N

,

however we define K slightly differently:

K0 =

∏
xiN

N

DN
, K = AK0

γ2

(γ + 1−K0)2
,

where A is amplification coefficient and γ > 0 (but usually a small number) has
a meaning of distance between two dashed curve in Fig. 1. The invariant works
approximately as a superposition of constant-product and stableswap invariants.

For solving this invariant against xj or D, we need to define it in a form
F (x, D) = 0:

F (x, D) = K(x, D)DN−1
∑

xi +
∏

xi −K(x, D)DN −
(
D

N

)N

.

The algorithm for swaps firstly solves F (x, D) = 0 equation against D, then
against xj given xi which is increased by the amount of coin i which is traded
in (just like it was done in curve/stableswap algorithm for stablecoins). We use
Newton’s method for that: firstly calculating D iteratively as Dk+1 = Dk −
F (x, Dk)/F

′
D(x, Dk) and xi,k+1 = xi,k − F (xi,k, . . . , D)/F ′xi

(xi,k, . . . , D). Since
all the logic is implemented for EVM, each calculation is optimized, so finding
a solution for D or xi takes about 35k gas.

Initial values are very important for the correct convergence of Newton’s
method here since the function is not monotonic. We have found that the best
initial values are:
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D0 = N
(∏

xk

) 1
N

,

xi,0 =
DN−1∏

k 6=i xkN
N−1 .

In addition to initial values, we determined limits of applicability of the
math above by fuzzing (using hypothesis framework). We find that (while all
noninteger numbers are taken at the basis of 1018) safe values for convergence of
xi are 0.1 ≤ D ≤ 1015 [USD]; 5 ·10−3 < xi/D < 200; 10−8 ≤ γ ≤ 10−2(typically
10−4); for convergence of D the values are 1 ≤ A ≤ 10000, 10−9 ≤ x0 ≤ 1015,
10−5 ≤ xi/x0 ≤ 105, 10−8 ≤ γ ≤ 10−2.

Algorithm for repegging
First of all, we track Xcp at every exchange or deposit. After every operation,
we multiply a variable xcp_profit by Xcp,after/Xcp,before, starting with 1.0.
We also have a variable xcp_profit_real which keeps track of all losses after p
adjustments. We undo p adjustment if it causes xcp_profit_real-1 to fall lower
than half of xcp_profit-1.

Internally, we have a price oracle given by an exponential moving average
applied in N -dimensional price space. Suppose that the last reported price is
plast, and the update happened t seconds ago while the half-time of the EMA
is T1/2. Then the oracle price p∗ is given as:

α = 2
− t

T1/2 ,

p∗ = plast (1− α) + αp∗prev.

We adjust the price vector in the direction towards p∗ in log space, how-
ever we do that with approximations in order to simplify computations (so the
direction could be a little bit different from the ideal (p∗ − p) vector with the
relative price change step being s, for i-th component:

pi
pi,prev

= 1 +
s√∑(
p∗
j

pj,prev
− 1
)2
(

p∗i
pi,prev

− 1

)
.

Dynamic fees
We have a fee f ranging from fmid to fout. It is determined as:
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g =
γfee

γfee + 1−
∏

xi

(
∑

xi/N)
N

,

f = g · fmid + (1− g) · fout.
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